H2020 STAR: ENABLING INDUSTRY 5.0 WITH TRUSTED ARTIFICIAL INTELLIGENCE

John Soldatos

EFFRA Manufacturing Partnership Day

September, 26th, 2023

www.star-ai.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°956573

STAR PARTNERS

- Start date: 1 January 2021
- End date: 31 December 2023
- Overall budget € 5 999 253,75

Project Coordinator

RISE OF ARTIFICIAL INTELLIGENCE IN A DATA ECONOMY

AI set to transform Manufacturing

Source: Tyrone Systems

Data is the New Oil

STAR

Sources: Google, Subredditstats, Media Reports

STAR

THE REALITY ABOUT AI IN MANUFACTURING

Manufacturing Enterprises are drowning in data, but still starving for insights & intelligence

AI must be <u>Human-Centric</u> and Acceptable by Workers (Industry 5.0 Vision)

Why Should Humans Trust AI?

STAR PERFORMS WORLD-CLASS RESEARCH ON HUMAN-CENTRIC AI

Explainable AI	Why did you do this?: Explain to Factory Workers the AI systems operation – Increase transparency & trust		
Active Learning	Robot-to-Human: Is this piece defected? Query human when not sure and accelerate Knowledge Acquisition for AI	STAR: ENABLING SAFE, Secure & Ethical AI In Manufacturing	EXPECTED IMPACT
Simulated Reality	Shorten Reinforcement Learning Cycle through Simulation – Useful for Safety	Explainable & Active Learning & Simulated Reality for	LINES SAFE HUMAN-ROBOT COLLABORATION AT SCALE
Human Centric Digital Twins	What-if-Analysis with the Human in Loop	Systems Human-Al Collaboration	FASTER UPTAKE OF AI SOLUTIONS (QUALITY4.0, CO- BOTS) ETHICAL IMPACT IN
Safety Zones Detection	Optimal Deployment of Automated Mobile Robots	Cyber Security Solutions for Al Systems in	RESEARCH (E.G., SIMULATED REALITY, ACTIVE LEARNING, EXPLAINABLE AI) PLACING EU AT
(Cyber)Security for AI Systems	Protection of AI Systems against Adversarial Attacks	Manufactutirng in Manufacturing	FOREFRONT OF GLOBAL AI R&D

STAR

Safe and Trusted Human Centric Artificial Intelligence in Future Manufacturing Lines

5 5

STAR HIGH LEVEL REFERENCE MODEL

STAR PROVIDES TRUSTED INDUSTRIAL DATA

STAR

STAR RISK ASSESSMENT ENGINE & SECURITY POLICY MANAGER

- STAR offers policy-based security monitoring for operational reliability and risk assessment functions
- OLISTIC: Risk Assessment & Mitigation Engine
 - Graph-based digital representation of the monitored production environments
 - Management and visualization of risks triggered by cybersecurity vulnerabilities/threats and abnormal events
 - Human-centric: Increase awareness on the security posture and enable informed decision making
- STAR Security Policy Manager
 - User-driven specification of policies for data reliability, protection against ML attacks and abnormal events
 - Realtime evaluation of received information to determine whether there is a potential threat
 - Human-centric: Interactive UI for user-defined security policies

9

STAR EXPLAINS HOW AI SYSTEMS WORK

Explainable AI(XAI)

• E.g., Explaining important parts of an image

Simulated Reality and Synthetic Data Generation

- E.g., for under-populated (defect) classes for the PCL shaver shell data
- Increased robustness to inputs both unknown defects and unknown products

Example: Explainable Artificial Intelligence in STAR

Use XAI to facilitate the annotation of images and enhance the explanations obtained through explainable artificial intelligence approaches.

- Machine learning models aim to detect defects when presented with a product image
- Explainable Artificial Intelligence is used to understand what does the model look for to determine the defect
- Human feedback can provide valuable information where defects are observed
- Human feedback can provide valuable information how to improve explainable artificial intelligence outcomes

Use collected information to create adaptive explanations.

STAR

11

STAR FOSTERS HUMAN-AI COLLABORATION

Active Learning for Quality Inspection

- Defect Detection
- Data Labelling

Active Learning for Fatigue Monitoring

Active Learning for Cyber Defence

DEFEC

IOW CERTAIN

NO DEFECT

Example: Quality Inspection and Active Learning

- Changing job profiles: Towards Synergies of humans with AI.
- STAR provides an Active-Learning based approach to foster **human – AI synergies**:
 - Interpreting inspection outcomes
 - Labeling inspection image data •
 - Correcting AI mistakes
 - Providing hints to operators (training/help)
 - Recognise operators' (cognitive) fatigue
- **Benefits:**
 - AI and humans benefit from each other
 - Joint human-AI synergy outcomes • improved over AI or humans alone
 - Proactively take mitigation actions to enhance the **workers' well-being**

STAR OFFERS HUMAN CENTRIC DIGITAL TWINS AND OTHER STAR HUMAN CENTRIC SYSTEMS

Fatigue Monitoring System,

Worker's Intention Recognition Module

AMR Fleet Optimizer

Safety Zones Detection System

Worker Training Platform

Example: Human Digital Twins in Collaborative Robotics STAR Applications

University of Applied Sciences and Arts of Southern Switzerland

SUPSI

/ university of groningen

Motivation: Most Cobot applications are not fully collaborative (out of ~40 applications we analysed only 3 are collaborative).

Cause: System integrators and end-users **fail to implement factors like human awareness**, training and ethics

Solution: Human Digital Twins (HDTs) increase human awareness in HRC systems and model humans, to **support simulation, control, decision-making,** and **monitoring**.

STAR developed an extensible and flexible platform that:

- Supports customised data representations (including human data)
- Provides a modular infrastructure with interchangeable components for easy instantiation and commissioning.

HDT in screwdriving

HDT in machines tending

activates the COMPLEMANT system, logs in and connects his/her devices.

STAR Safety: Video Analytics & Reinforcement Learning

for Autonomous Mobile Robots (AMRs)

University of Applied Sciences and Arts of Southern Switzerland

The goal is to optimize the control a whole fleet of AMRs, taking into account a dynamic environment, in particular human presence, thanks to Video Analytics

ür Künstliche

...to robot anticipation

Thanks to:

- ML Video Analytics for humans and objects detection (robotino, and obstacles) / human & robotino localization in real world
- ML for aggregated pedestrians' positions anticipation
- Pathfinding
- RL to avoid collision with anticipated detours

STAR

Workers' Training and Continuous Learning

y university of groningen

Create a Workers' Training/Upskilling System, link to media content and training materials, inform about the platforms and tools developed within the project Templates

Functionalities (ongoing):

- CV analysis
- Virtual Interviewers (using NLP and voice interaction)
 - Replaces the old Multilevel self-assessment questionnaire
- Chatbot for getting information about occupations
- Training recommendation engine
 - Linked to project and external training materials

Worker oriented:

- Compare occupations (find similarities)
- Discovering paths, training materials
- Understanding details about current or future occupations (tasks,

STAR

LESSONS WE LEARNT FROM STAR

1. INVOLVE STAKEHOLDERS (FROM THE START)

STAR's Co-Creation Approach; Boost a Cultural Shift in Manufacturing Enterprises

2. DESIGN FOR HUMAN-AI COLLABORATION

Humans remain the most flexible resource; Design Al models that benefit from their ability, rather than replacing them (e.g., Active Learning, HDT)

3. DATA IS NEVER PERFECT & NEVER ENOUGH

Ensure data quality; Try to be Data Efficient; Design resilient and unbiased systems

4. CONTINOUS TRAINING, SKILLS DEVELOPMENT AND SUPPORT

Workers, Managers, Operators must be all confident to use and fully leverage the AI technology

LESSONS ON HOW TO DELIVER HUMAN-CENTRIC AI

Human – AI synergies deliver more than the sum of individual parts

STAR

Safe and Trusted Human Centric Artificial Intelligence in Future Manufacturing Lines

LESSONS ON HOW TO DELIVER HUMAN-CENTRIC AI

Production machinery quality affects performance of finished part; production load at maximum limit for several weeks; changed supplier of parts a few months ago; order to be delivered within 2 weeks; avoid production interruption is possible with advance context-based action

Perform inspection within a week

Data indicates throughput drops below average and production machinery quality deteriorates faster than expected

Data taken on a specific date, location/production asset, production throughput of specific line is calculated

D1	2018:7:23:12:01	577.5	1	0.123
D2	2018:7:23:12:02	574.3	0	0.099
D3	2018:7:23:12:03	568.1	1	0.021
D4	2018:7:23:12:04	564.7	1	-0.012
D5	2018:7:23:12:05	543.2	0	-0.055
D6	2018:7:23:12:06	548.1	1	-0.132

STAR

PUBLISHED AND UPCOMING BOOKS

Open Access Books

- Published: Trusted AI in Manufacturing (STAR Book) (>40000 downs)
- Upcoming: "AI in Manufacturing", AI4Manufacturing Cluster Book, to be published by Springer Nature, Q4 2023

AI in Manufacturing: Enabling Intelligent, Flexible and Cost-Effective Production Through AI

AI4MANUFACTURING

20

QUESTIONS?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N°956573