

Towards AI powered manufacturing services, processes, and products in an edge-to-cloud-knowlEdge continuum for humans

Redefining Manufacturing:

Empowering Humans with AI-Driven Solutions from Edge-to-Cloud

Manufacturing Partnership Day, Brussels, 26.09.2023

Dr. Stefan Walter stefan.walter@vtt.fi

The manufacturing evolution

- Acceleration through exponential technologies
- Vertical networking of smart production systems
- Through-engineering across the entire value chain
- Horizontal integration via na new generation of global value chain newttworks

- Companies must address their
 transition with digital technologies to
 reinvent their products, processes
 and services from a variety of
 perspectives, including design,
 engineering and support services.
- The solution to realise the potential of digitalisation and the progress in the manufacturing industry lies in a meaningful combination of smart and connected technologies.
- The outcome of this effort is the enabler of Industry X.0.

knowlEdge partners and objectives

knowlEdge consortium

www.knowlEdge-project.eu

know Eda

Horizon 2020, ICT-38 AI for manufacturing, 2021 – 2023

- Al centric software architecture to support agile manufacturing scenarios.
- Deployment model capable of distributing data mining and analytic services across the compute continuum (edge-to-cloud).
- Interactive and multi-sided knowledge marketplace to enable the provisioning and utilisation of AI – simplify uptake and diffusion.
- Efficient and secure communication, data management and governance infrastructure.
- Advanced user-facing applications and services.

Unique knowlEdge

Current practices and envisioned future through the knowlEdge prism

- Data Exploration and Management: making data meaningful
- Human-Al Feedback Loop: Xplainable Al
- Al Monitoring and Maintenance: detecting performance degradation, re-training techniques
- Digital Twin Framework for realistic simulations before bringing AI models into production
- Integrated edge-to-cloud orchestration
- Incorporates marketplace for AI models, allows trading pre-learned models (new business models)
- Foundation for enhanced system intelligence & decentralisation

Progress so far: platform components developed

Functional layers:

Smart decision-	 Provides user interfaces and offers the human-
making	in-the-loop aspects
knowlEdge	 Represents and stores knowledge used
management	throughout the architecture
AI and data	 Covers the AI lifecycle, from model training to
analytics	deployment and maintenance
Data integration and management	• Enables interoperability and incorporates data from various sources, such as supply chain nodes
Platform services	 Governs the deployment of models in the cloud, fog and edge computing continuum

In the process: pilot deployment

Pilot: dairy food production

*	KnowlEdge
1. Arrival of orders	6. Distribution for vehicle
2. Aggregation of orders	7. Vehicle loading
3. Production planning	
4. Production	8. Trasport to destination
5. Transfer to the warehouse	9. Creating new orders

Use cases

1. Optimising **production scheduling**, based on incoming order data (finite capacity: **optimizing production while meeting constraints**)

2. Enhanced **process efficiency**, based on interconnected data of production and distribution chains (allocate resources to production while forecasting demand)

Manufacturing scenarios

Scheduling the production plan: Advanced analytics, constraints, priorities, forecasts Monitoring of production: Real time data collection, decision-support Real-time adjustments of the production process: Managing deviations, suggestions for decision-making, documentation

In the process: pilot deployment

Pilot: automotive/fuel tank production

know **Eda**e

Use case

3. Production optimization for small batches (Blow molding of fuel tanks): Based on a set of adjustable manufacturing information, ensure the final product quality, reduce faulty output and waste, reduce raw materials.

Manufacturing scenarios

Anomaly detection for zero defect production: unifies and updates information (product specifications, material properties, machine data, KPI's), notifies on any deviation from the expected specifications, domain experts can take active role, AI model learns from acceptance/rejection by the domain expert, documentation of errors and solutions

In the process: pilot deployment

100	ST.OP10A TABLE		6.15 Date:
100	• [Transford
*	The second s	1	and set
	Press.		
		-	
1			
			5m.61
			dan da

Knowied	ge Decision :	support :	system				•10	Technologi Specialis
à ~~~	A + 44	ulptin & former	ng + napos					
Destaurant and	AT WARMS	- Analysis						
-		00W		normal, A_1 timp			(C) view insula	
1010								
dissipation and								
Ry federates and part (Ph)					1	/erdict:		
Sector of Sector Sector								
						\sim		
			. (9)					
						iormal		
			Contract of the					
	a constant	nost tyr son						OfWI

Use case

Manufacturing scenarios

4. Al video analysis assembly supervisor: Given a picture of an assembled product in various phases of assembly, generate solution for decision support whether or not the product is assembled correctly **Preparing assembly:** Requirements gathering, documentation, workstation, tool availability

During assembly: Workplace specific (contextual) information, Real-time monitoring and analysis of assembly steps, showing dependencies, prompts alert in case of errors or intolerences, troubleshooting, documentation of earlier solutions

Moving European manufacturing forward

knowlEdge addresses elements of strategic research agendas, e.g. ManuFuture SRIA 2030

ManuFuture SRIA 2030

- Real-time process supervision, control and simulation, for precise management and optimization of manufacturing operations.
- Al driven cyber-physical production systems for integrated, adaptable and efficient manufacturing.
- Zero-defect, autonomisation and (self-)adaptivity for longterm competitive, sustainable and resilient manufacturing.
- Cognitive manufacturing support, based on AI to collect historical data, scenario simulation, knowledge and best practices.
- Human-centred manufacturing, augmenting capabilities especially in terms of understanding, protecting, supporting and empowering.

Moving European manufacturing forward

Human work culture

- Human-centredness attracts new kind of workforce
- Knowledge availability allows re- and upskilling ۲

Sustainability transition

- Reducing carbon footprint through data and AI model sharing
- Increasing energy and resource efficiency through simulations
- Transparency and accelerating innovation

Collaborative ecosystem

- Knowledge sharing, enabling participation and collaboration
- Untapping the potential of small businesses and reduce the gap between them and large businesses

Building the future of European manufacturing

- Collaborating while removing boundaries
- Greater resilience through decentralisation

eit Manufacturing's vision

Future plans

Upcoming book

Soon to be published:

Artificial Intelligence in Manufacturing: Enabling Intelligent, Flexible and Cost-Effective Production Through AI

edited by John Soldatos, published by Springer Nature

knowlEdge consortium contributed 6 chapters!

Thank you !

www.knowlEdge-project.eu

The research leading to these results has received funding from Horizon 2020, the European Union's Framework Programme for Research and Innovation (H2020/2014-2020) under grant agreement no 957331